diffusion_models.models.nnΒΆ
Various utilities for neural networks.
Functions
|
Create a 1D, 2D, or 3D average pooling module. |
|
Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. |
|
Create a 1D, 2D, or 3D convolution module. |
|
Create a linear module. |
|
Take the mean over all non-batch dimensions. |
|
Make a standard normalization layer. |
|
Scale the parameters of a module and return it. |
|
Create sinusoidal timestep embeddings. |
|
Update target parameters to be closer to those of source parameters using an exponential moving average. |
|
Zero out the parameters of a module and return it. |
Classes
|
|
|
|
|